Contents of
Karlheinz SPINDLER
Abstract algebra with applications (Vol. 1)
Marcel Dekker, New York (1994)


VECTOR SPACES

1. First introduction: affine geometry ..............  1
2. Second introduction: linear equations ............ 22
3. Vector spaces .................................... 49
4. Linear and affine mappings ....................... 72
5. Abstract affine geometry ......................... 95
6. Representation of linear mappings by matrices ....111
7. Determinants .....................................138
8. Volume functions .................................159
9. Eigenvectors and eigenfunctions ..................177
10.Classification of endomorphisms up to similarity..205
11.Tensor products and base-field extensions ........230
12.Metric geometry ..................................249
13.Euclidean spaces .................................273
14.Linear mappings between Euclidean spaces .........303
15.Bilinear forms ...................................331
16.Groups of automorphisms ..........................366
17.Application: Markov chains .......................393
18.Application: matrix calculus and differential eq..424

GROUPS

19.Introduction .....................................451
20.Groups ...........................................461
21.Subgroups and cosets .............................476
22.Symmetric and alternating groups .................497
23.Group homomorphisms ..............................511
24.Normal groups and factor groups ..................529
25.Free groups: generators and relations ............548
26.Group actions ....................................575
27.Group-theoretical applications of group actions ..596
28.Nilpotent and solvable groups ....................608
29.Topological methods in group theory ..............624
30.Analytical methods in group theory ...............644
31.Groups in topollogy ..............................671
32.Appendix .........................................701

BIBLIOGRAPHY ........................................743

INDEX ...............................................745

The volume 2 is devoted to 
RINGS AND FIELDS